Using Agronomic Practices to Increase the per Hectare Yield of Flax Fibre

Presented at
PaperWeek
International 2005

Montreal, Feb 8, 2005

by

Alvin Ulrich

Biolin Research Inc./

SaskFlax

Background

- 600,000 to 800,000 ha of oilseed flax grown annually in Western Canada
- Flax straw has high levels of cellulosic fibre
- Flax <u>fibre-related</u> production research relatively new to Western Canada
- Want agronomic practices that increase fibre content, straw production and seed yield <u>cost effectively</u>

Fibre Yield

- 2 components to Fibre Yield
 - Straw Yield-more important to farmer
 - Traditional baling after combine
 - average 1.2 to 1.5 t/ha
 - range 0 to 2.5 t/ha
 - New methods may double these "salvaged" yields
 - Fibre Content-more important to processor
 - average 13 to 18%
 - range 2 to 30%
 - Important to farmer IF straw payment were based on fiber content

Fibre Content and Processing Cost

Example Showing how Fiber Content in Fla	x Straw G	reatly Affect	ts Profitabi	lity of
Processing the Straw for Fiber				
Fiber Content of Straw		5%	15%	25%
Average payment to farmers	\$/tonne	<8>	<8>	<8>
Average total cost for baling, hauling,				
Stacking, unstacking from field to factory	\$/tonne	<42>	<42>	<42>
Cost to process 1 tonne of straw	\$/tonne	<25>	<25>	<25>
Total cost of Straw + Processing	\$/tonne	<75>	<75>	<75>
Straw needed to give 1 tonne of fiber	tonnes	20	6.7	4
= Cost of I tonne of fiber (Straw + Processing)	\$/tonne	<1,500>	<500>	<300>
Average value of fiber fob Sask factory	\$/tonne	600	600	600
Gross Margin (before fixed costs)	\$/tonne	<900>	100	300

Fibre Production

- Influenced by the interaction of several Agronomic and Non Agronomic factors
 - growing season weather
 - variety sown
 - fertility
 - seeding rate
 - seeding date
 - type of soil
 - harvest management

Geographic Location

 Results from two 2003 Saskatchewan Regional Variety Trial Locations

Location	Straw Yield	Fiber Content	Fiber Yield
	kg/ha	%	kg/ha
Watrous	1,013	16.8%	170
Kernan	349	11.1%	38

Agronomic Factors....

- Seeding Date and Fibre Yield
 - not conclusive but, in general, <u>late</u>
 <u>seeding</u> tends to <u>increase</u> fibre content
 and straw yield
 - -BUT tends to decrease seed yield

....Agronomic Factors THE EFFECT OF SEEDING DATE ON FIBRE CONTENT, STRAW YIELD AND FIBRE YIELD

		Fibre		Fibre
Site,	Seeding	Content	Straw	Yield
Year	Date	%	Yield kg	kg/ha
Mel-01	Early	12.8	n/a	n/a
	Late	14.9	n/a	n/a
Mor-01	Early	17	n/a	n/a
	Late	12.7	n/a	n/a
IH-01	Early	8.3	n/a	n/a
	Late	10.8	n/a	n/a
Can-03	Early	15.7	2,120	331
	Late	18.2	2,780	519
IH-03	Early	13.6	680	93
	Late	14.8	960	142
Red-03	Early	15.8	1,030	163
	Late	17.4	1,550	214

Notes:
n/a = not available
Mel-01 = Melfort, SK 2001
Mor-01 = Morden, MB 2001
IH-01 = Indian Head, SK 2001
Can-03 = Canora, SK 2003
IH-03 = Indian Head, SK 2003
Red-03 = Redvers, SK 2003

....Agronomic Factors

- Possible reasons why late seeding tends to give more fiber, but less seed
 - plant "bolts" in early July when temperatures are higher, resulting in taller stems
 - blooms in late July when more heat stress and lower pollination rate (less seeds to fill)
 - fiber "filling" in late Aug when plants less stressed
 - Photo-period effects ??

....Agronomic Factors....

- Seeding Method
 - Goals = 1) high fiber yield/ha; 2) consistent
 small stem sizes, 3) fast retting
 - Seed Bed Utilization (low to high)
 - Disc < Hoes < Sweeps
 - Impact on straw yield dependent upon seeding rates (i.e., wider seed spread pattern more important with heavier seeding rates)

....Agronomic Factors....

Seeding Method

- No noticeable impact on fibre content (dry years?)
- but generally higher straw yield, higher per ha fiber yield and more consistent stem sizes with wider seed spread pattern
- Consistent seeding depth very important for high plant counts/m2 and for consistent stem diameters

....Agronomic Factors THE EFFECT OF SEEDING METHOD ON FIBRE CONTENT, SALVAGED STRAW YIELD AND FIBRE YIELD (2003 - dry year)

	S	Salvaged		
	Fibre	Straw	Fibre	Stem
Seeding	Content	Yield	Yield	Diam.
Method	%	kg/ha	kg/ha	mm
Sweep	17.3	998	310	1.36
Hoe	17.2	864	276	1.49

....Agronomic Factors.....

- Seeding Rate
 - Results from 2003

Salvaged						
Seeding	Fibre	Straw	Fibre	Stem		
Rate	Content	Yield	Yield	Diameter		
kg/ha	%	kg/ha	kg/ha	mm		
40	17.2	1,581	286	1.50		
80	17.3	1,740	319	1.32		
120	17.2	1,724	316	1.24		

....Agronomic Factors

 Interaction of Seeding Rate and Seeding Method

Variety Selection....

- Not all varieties have the same fibre content
 - at Canora, SK 2003
 - Linola 1084 19.2%
 - AC MacBeth 13.8%
- Not all varieties have the same straw yield
 - at Canora, SK 2003
 - Linola 1084 1142kg/ha
 - AC MacBeth 742kg/ha

....Variety Selection....

Hence not all Varieties have the same fibre yield/ha

- Canora 2003
 - Linola 1084 219kg/ha
 - AC MacBeth 102kg/ha

....Variety Selection

- Fibre Flax Varieties
 - Fibre Contents
 - Average 20-30%
 - Range 13%-40%
 - Straw Yields
 - Average 4.2-5.6 t/ha
 - Range 1.5-10t/ha
 - Depends upon variety and year

Combined Effects of Agronomic Practices: An Example

• Canora 2003

Variety	Seeding	Seeding	Seeding	Fiber	Straw	Fiber
	Rate	Method	Date	Content	Yield	Yield
	kg/ha			%	kg/ha	kg/ha
Taurus	40	Hoe	Early	14.2	1859	264
Flanders	80	Sweep	Late	21.5	3055	657

• If fibre is worth \$50-.80/kg then extra 393 kg of fibre **after processing** is \$197 -314/ha

Summary....

- Agronomy has significant influence on fibre content, straw yield and fibre yield
- Most agronomic practices that increase fibre yield are not expensive to implement

....Summary

 More agronomic research (fertilizer, seeding dates, seeding rates etc.) is needed to prepare a management regime that maximizes profits for flax as a dual purpose crop

Flax -Stop the Burning! Start the Earning!

Contact **Alvin Ulrich** or **Richard Marleau**

Biolin Research Inc. 161 Jessop Avenue Saskatoon, SK. S7N 1S4 306.668.0130 phone 306.668.0131 fax aulrich@biolin.sk.ca rmarleau@biolin.sk.ca